Account Login/Registration

Access KelownaNow using your Facebook account, or by entering your information below.


Facebook


OR


Register

Privacy Policy

Acetaminophen use may be associated with making errors

A team of researchers from UBC and the University of Toronto have studied the effect of acetaminophen on the brain.

The research, authored by a team including postdoctoral fellow Dan Randles, is the first neurological study to look at how acetaminophen could be inhibiting the brain response associated with making errors.

"Past research tells us physical pain and social rejection share a neural process that we experience as distress, and both have been traced to same part of the brain," said Randles.

Recent research has begun to show how exactly acetaminophen inhibits pain, while behavioural studies suggest it may also inhibit evaluative responses more generally. Randles own past research has found that people are less reactive to uncertain situations when under the effect of acetaminophen.

<who> Photo Credit: University of Toronto Scarborough

"The core idea of our study is that we don't fully understand how acetaminophen affects the brain," added Randles. "While there's been recent behavioural research on the effects of acetaminophen, we wanted to have a sense of what's happening neurologically."

To test the idea, two groups of 30 were given a target-detection task called the Go or No Go. Participants were asked to hit a Go button every time the letter F flashed on a screen but refrain from hitting the button if an E flashed on the screen.

"The trick is you're supposed to move very quickly capturing all the GOs, but hold back when you see a No Go," Randles said.

Each participant was hooked up to an electroencephalogram (EEG), which measures electrical activity in the brain. The researchers were looking for a particular wave called Error Related Negativity (ERN) and Error Related Positivity (Pe). Essentially what happens is that when people are hooked up to an EEG and make an error in the task there is a robust increase in ERN and Pe.

One group, which was given 1,000 mg of acetaminophen - the equivalent of a normal maximum dose - showed a smaller Pe when making mistakes than those who didn't receive a dose, suggesting that acetaminophen inhibits our conscious awareness of the error.

"It looks like acetaminophen makes it harder to recognize an error, which may have implications for cognitive control in daily life," explained Randles.

Cognitive control is an important neurological function because people are constantly doing cognitive tasks that flow automatically like reading, walking or talking. These tasks require very little cognitive control because they are well mapped out neurological processes, notes Randles.

The study was double blind, so neither the researcher running the study nor the participant knew whether they had been given a placebo or acetaminophen. n unexpected and surprise finding that Randles plans to explore more closely is that those who received an acetaminophen dose appeared to miss more of the Go stimuli than they should have. He plans on expanding on the error detection aspect of the research to see whether acetaminophen is possibly causing people to "mind wander" and become distracted.



If you get value from KelownaNow and believe local independent media is important to our community we ask that you please consider subscribing to our daily newsletter.

If you appreciate what we do, we ask that you consider supporting our local independent news platform.



weather-icon
Wed
20℃

weather-icon
Thu
25℃

weather-icon
Fri
27℃

weather-icon
Sat
30℃

weather-icon
Sun
27℃

weather-icon
Mon
26℃

current feed webcam icon

Recent Livestream




Top Stories

Follow Us

Follow us on Instagram Follow us on Twitter Like us on Facebook Follow us on Linkedin Follow us on Youtube Listen on Soundcloud Follow Our TikTok Feed Follow Our RSS Follow Our pinterest Feed
Follow Our Newsletter
Privacy Policy